This handbook is conceived for clinicians who have already attended theoretical and practical courses of implant surgery. Each clinician must be aware that continuous education is vital step to ensure updated skills and notions regarding both surgical and prosthetic procedures.

Our mission is to simplify and optimize clinical activity.

CLC CONIC was ideated with limited components and ad hoc biological and mechanical characteristics, nevertheless ensuring optimal result in terms of biological, aesthetic, functional outcome, even in complicated treatment plans.

CLC Conic Implant System.

- Maintenance of marginal bone.
- Reduced necessity of Surgical Regenerative therapy.
- One universal platform for five different implant diameters.
- Suitable for one stage and two stage implant procedure.
- Suitable for both immediate and early loading.
Preoperative Planning

To perform a correct diagnosis and treatment plan it is fundamental to:

1) Obtain exhaustive medical history and clinical overview of the patient;

Absolute contraindications:
- Cardiac diseases, unless otherwise specified by a cardiologist.
- Coagulation disorders.
- Oral anticoagulants.
- Psychological Diseases.
- Uncontrolled acute infections.
- Uncontrolled Diabetes.

Risk Factors:
- Age
- Controled diabetes.
- Previous radiotherapy of the jaws.
- Chemotherapy.
- Smoke.
- Alcohol and drugs consumption.
- Some oral lesions.
- Long lasting and High dosage corticosteroid therapy.
- History of bisphosphonates assumption.

2) Recognition of specific oral problem;

It is fundamental to discuss the goal of treatment with the patient, in terms of aesthetic and functional outcomes, in order to fulfill patient’s expectations. Give the patient exhaustive pieces of information regarding risks, costs and duration of treatment.

3) Choice of implant;

Length and diameter have to be chosen according to bone quantity. Intraoral x-rays, panoramic x-ray, diagnostic casts and clinical examination are essential steps to assess the existence of sufficient bone volume in the implant site. A deepened overview of bone anatomy can be achieved thanks to CT scans, in order to avoid iatrogenic damages caused by incorrect positioning of the implants. (i.e. inferior alveolar nerve proximity).
Implant Surgical Tray

<table>
<thead>
<tr>
<th>Ø (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Implant Surgical Tray Ø 2.0</td>
</tr>
<tr>
<td>2.3</td>
<td>Implant Surgical Tray Ø 2.3</td>
</tr>
<tr>
<td>2.5</td>
<td>Implant Surgical Tray Ø 2.5</td>
</tr>
<tr>
<td>2.8</td>
<td>Implant Surgical Tray Ø 2.8</td>
</tr>
<tr>
<td>3.0</td>
<td>Implant Surgical Tray Ø 3.0</td>
</tr>
<tr>
<td>3.2</td>
<td>Implant Surgical Tray Ø 3.2</td>
</tr>
<tr>
<td>3.5</td>
<td>Implant Surgical Tray Ø 3.5</td>
</tr>
<tr>
<td>3.8</td>
<td>Implant Surgical Tray Ø 3.8</td>
</tr>
<tr>
<td>4.0</td>
<td>Implant Surgical Tray Ø 4.0</td>
</tr>
<tr>
<td>4.2</td>
<td>Implant Surgical Tray Ø 4.2</td>
</tr>
<tr>
<td>4.5</td>
<td>Implant Surgical Tray Ø 4.5</td>
</tr>
<tr>
<td>5.0</td>
<td>Implant Surgical Tray Ø 5.0</td>
</tr>
<tr>
<td>5.5</td>
<td>Implant Surgical Tray Ø 5.5</td>
</tr>
<tr>
<td>6.0</td>
<td>Implant Surgical Tray Ø 6.0</td>
</tr>
</tbody>
</table>

Notes:
- short: CDCL13S
- long: CDCL13L
- ADDRCO long: CDCL13L
- CRIC02: short: CDCL13S
- medium: CDCL13M
- long: CDCL13L
- ESCL01: Ø 2.0-2.8 mm
- PRCL01: Ø 3.3-3.8 mm
- MPCL01: medium
- EDCL01: medium

Legend:
- wheel
- drill
- medium
- long
- short
- ADDRCO
- medium
- long
- short
- MHC01
- medium
- long
- short
- MHC02
- MHC03
- MHC04
- MHC05
Drills

Direction Drill
Sharp and resistant, they allow easy and precise surgical access even in case of thick compact bone. Moreover, it allows modification of osteotomy’s direction.

Marker drills
They are used to cut cortical bone and design the correct position of the implant.

Twist Drills for standard bone
They allow to achieve proper osteotomy’s diameter at the desired depth. Cylindrical shape are furnished with three blades that allow a balanced rotation during bone asportation. All drills are marked with depth grooves, identification batch and dimension indicator.

Pilot holes
Guide and direct the subsequent cylindric twist drill.

Cortical Drills
They are support drills that prepare the cortical bone to the correct implant diameter. They are used when compact bone is present.
Twist drills

Grooves indicate a progressive depth corresponding to 8, 10, 12, 14mm, whereas the tip of the drill accounts for 0.5mm.

Please note! Grooves do not correspond exactly to the length of the drill since the tip will penetrate in the implant site with an increased measure of 0.5mm. The grooves indicate the suitable depth for implants of different lengths at the bone level.

All drills work clockwise. Each drill can be used to prepare an implant site almost 30 times, although this can slightly vary depending on the density of bone. It is mandatory to replace drills when not sharp anymore or when they are damaged.
Drilling Sequence guidelines

Standard drilling protocol

- **Implant 3.5**
 - Twist drill 2.0
 - Optional pilot drill 2.8
 - Twist drill 2.8

- **Implant 4.0**
 - Twist drill 2.0
 - Optional pilot drill 2.8
 - Optional pilot drill 3.3
 - Twist drill 3.3

- **Implant 4.5**
 - Twist drill 2.0
 - Optional pilot drill 2.8
 - Optional pilot drill 3.3
 - Optional pilot drill 3.8
 - Twist drill 3.8

- **Implant 5.0**
 - Twist drill 2.0
 - Optional pilot drill 2.8
 - Optional pilot drill 3.3
 - Optional pilot drill 3.8
 - Optional pilot drill 4.2
 - Twist drill 4.2

- **Implant 6.0**
 - Twist drill 2.0
 - Optional pilot drill 2.8
 - Optional pilot drill 3.3
 - Optional pilot drill 3.8
 - Optional pilot drill 4.2
 - Twist drill 4.2
 - Optional pilot drill 5.2
 - Twist drill 5.2

Dense bone drilling protocol

- **Implant 3.5**
 - Conturex 3.5
 - Twist drill 3.1

- **Implant 4.0**
 - Conturex 4.0
 - Twist drill 3.6

- **Implant 4.5**
 - Conturex 4.5
 - Twist drill 4.0

- **Implant 5.0**
 - Conturex 5.0
 - Twist drill 4.5

- **Implant 6.0**
 - Conturex 6.0
 - Twist drill 5.5
Drill stops

Drill stops are given in a box conceived for an easy and safe handling by the clinician. All components are manufactured with autoclavable materials, including the box.

- **Drill stops for Ø 2.0 twist drill**
 - Ø 2.0
 - STH214-CO
 - STH212-CO
 - STH210-CO
 - STH28-CO

- **Drill stops for Ø 2.8 twist drill**
 - Ø 2.8
 - STH2814-CO
 - STH2812-CO
 - STH2810-CO
 - STH288-CO

- **Drill stops for Ø 3.3 twist drill**
 - Ø 3.3
 - STH3314-CO
 - STH3312-CO
 - STH3310-CO
 - STH338-CO

- **Drill stops for Ø 3.8 twist drill**
 - Ø 3.8
 - STH3814-CO
 - STH3812-CO
 - STH3810-CO
 - STH388-CO

- **Drill stops for Ø 4.2 twist drill**
 - Ø 4.2
 - STH4214-CO
 - STH4212-CO
 - STH4210-CO
 - STH428-CO
Implants

Packaging
The CLC CONIC dental implants are provided in a sealed sterile double packaging that protects from external influences and ensure sterility during until using or expiration date. The sterile packaging complies with the European standard EN 556 - I: 2002.

The package consists of:
- Rigid box (outer box)
- Blister (secondary packaging)
- PMMA vial with cap (primary packaging).

The implant inside the PMMA ampoule is supported apically by a Grade 4 titanium base. The top of the collar is hold in a vertical position by a Grade 4 Titanium ring. The contact surface between the fixture and the supports is at the most reduced to guarantee the implant roughness surface integrity.
Implant surgery

Surgical procedures

Site Preparation System

Implant 3.5mm ̅ x 10 mm length

Ball shaped guide drill
To mark the center of the tooth to be replaced and assess bone quality.

Position markers drill
To verify the position the implant between the bone edge and adjacent teeth or implants.

Direction drill
Simplifies the achievement of a correct implant axial direction. Allows to modify the axial direction when required.

Twist drill 2.2 mm diameter
Allows to reach the desired depth (based on the marks on the drill). It will be used with a movement back and forth, keeping pressure on bone for 1-2 sec. A 2.2 mm diameter direction indicator, is inserted into the initial preparation to verify the correct position and direction. In case of multiple p.

Speed 800-1200 RPM 25-30 Ncm torque and with abundant irrigation.
Implant surgery

Pilot drill 2.0 (Optional)
The portion between the atraumatic tip and the first notch allows to drive the transition to the following twist drill.

Speed 800-1200 RPM 25-30 Ncm torque and with abundant irrigation.

Twist drill 2.8 mm
Allows to reach the desired depth (based on the marks on the drill) with a suitable diameter for insertion of the selected implant. It will be used with a back and forth movement, keeping pressure in the bone for 1-2 sec.

Speed 800-1200 RPM Torque 25-30 Ncm and with abundant irrigation.

Cortical Drill 3.5 (Bone D1, D2)
Allows the placing of the implant neck in presence of compact bone.

Speed 400-600 RPM 25-30 Ncm torque and with abundant irrigation.

Twist drill 3.1 (Bone D1)
In the presence of very compact bone, develops a wider site, facilitating the insertion of the implant.

Speed 800-1200 RPM, 25-30 Ncm torque and with abundant irrigation.

Implant pick up
Once the implant bone site is prepared, open the sterile blister, carefully unscrews the vial cap, engages the handpiece mounted implant driver at the implant. At this time the implant can be easily removed from vial.
This kind of connection allows a safe transport and a controlled implant installation, and permits to transfer the necessary torque during the implant placement (Max torque 60 N).

Step 1
To access to the PMMA vial, break the blister squeezing out the half shell containing the vial.

Step 2
To access to the implant remove the cap of the vial. Once the cap is removed can be placed on the sterile drap. The cover screw is safely retained by the cap.

Step 3
Once the cap is removed engage the implant using the specific implant carrier, manually or using the handpiece.
Implant surgery

Placing the implant
Assess precisely the depth of drilling before implant placement using a depth gauge. Install the implant into the osteotomy without irrigation, using low speed (20 rpm) and a torque value between 25 and 45 Ncm. The final tightening and/or verification of implant stability can be done manually using the Manual Torque wrench. Very high torque values may result in an unwanted bone compression. In addition, a higher torque (over 60-70N) could cause deformations of implant connection components. Therefore, under these conditions remove the implant, use a larger diameter twist drill and reinsert the implant.

Disconnect the implant
Once you have completely inserted the implant, simply remove the implant driver from the head of the implant. Then install on the implant a cover screw or a healing abutment.

WARNING
Implant Placement
To reach the advantage of internal conical connection and minimize the peri-implant bone resorption, it is recommended to place the implant head 1mm below the bone crest. Placement of the implant in sub-crestal position, promotes the formation of new bone above the edge of the implant platform. This provides further support for the overlying soft tissue and a better prospect for long-term aesthetics of the hard and soft tissues. The implant can, however, be located, without any problems, even in the crestal position. This way reduces the benefit from the prosthetic abutment subcrestal positioning, but there is no negative consequence from the biological point of view.

Finalizing surgical procedure

One stage procedure
Using a light hand force (5-10 Ncm), insert the healing abutment with selected length and diameter. Adapting and suture accurately the tissues around the healing abutment.
A one stage surgical procedure may include a temporary prosthetic restoration placed on a temporary abutment.

Two stage procedure
Cover screw installing
Take the screw cover from the implant package and insert and screw it manually with a light torque. Carefully replace the flaps above the cover screw and suture.

Healing abutment installing
After an adequate period of healing, expose the cover screw and remove it using the screwdriver. Then install the selected healing abutment.
Implant surgery

The CLC CONIC IMPLANT can be inserted in an angled position, the axis of the corresponding crown. However, as the tests, according to ISO 14801-2008, should be avoided an angle between implants greater than 30 degrees, that expose the implant and the abutment to excessive mechanical stress, may predispose them to fracture.
Prosthetic procedures

- CEMENT RETAINED PROSTHESIS
- DIRECT TO IMPLANT SCREWED PROSTHESIS
- CONNECTOR SCREWED PROSTHESIS
- ATTACH RETAINED OVERDENTURE
- BAR RETAINED OVERDENTURE
Cement retained prosthesis

- Implant pick up
- Implant replica
- Temporary Prosthetic Abutment
- Definitive Prosthetic Abutment
 - Standard and angulated Abutment
 - Bourn-out Abutment
 - Titanium base + Bourn out abutment
 - Cad-Cam Body Scanner
 - Titanium base for Zirconium Abutment

- Single crown
- Partial Bridge
- Full arch bridge
Operations sequence

Healing abutments on implants placed

Healing abutments removal by Hex driver handle

Open impression tray placement

Unscrewing of pick up retention screws by Hex driver handle

Unscrewing of pick up retention screws by Hex driver handle

Removal of pick up retention screws

Removal of impression tray with pick up

Impression tray with pick up is sent to the laboratory for casting the model

Impression material appliance on the pick up
Insertion of implant replica screwed to the corresponding pick up

Pink Soft resin for gum replica

Plaster master cast mounting

Master cast with pick up

Master cast with implant replica after pick up removal

Crowns bridge wax on implant replica

Silicon impression of Crowns bridge wax

Screwing of lab red retention screws after abutment placement

Abutment of prosthesis screwed on the connector replica

Analysis of prosthesis abutments reduction

Analysis of prosthesis abutments reduction
Trimming of coronal portion of prosthesis abutments based on crowns bridge dimension

Evaluation of Prosthesis abutments dimension and direction

Trimming of Prosthesis abutments by tungsten carbide burr

Final Evaluation of Prosthesis abutments dimension and direction

Wax bridge framework placement on the reduced prosthesis abutments

Wax bridge reduction to realize the metal framework of the ceramic bridge

Evaluation of the wax framework dimension

Displacement of the wax framework of the ceramic bridge

Wax framework of the ceramic bridge ready for the merger

Wax framework placement into the melting oven
Metal framework

Metal framework test on the prosthesis abutments placed in the master cast

Metal framework test on the master cast

Prosthesis abutments on the corresponding implants

Metal framework test on the prosthesis abutments placed in the patient mouth

Ceramic structure on the metal framework

Ceramic bridge test on the master cast

Resin positioning jig prosthesis abutment placement

Positioning JIG removal with prosthesis abutments

Positioning JIG placement in patient mouth with prosthesis abutments
Prosthesis abutment retention screws screwing by Hex driver handle

Final Prosthesis abutment screwing by ratchet wrench at 25N

Closure of prosthesis abutment access holes

Ceramic bridge placement by cement retention

Ceramic bridge after careful removal of cement excesses
Direct to implant screwed prosthesis

- Implant pick up
- Implant replica
- Temporary Prosthetic Abutment
 - Anti rotational temporary standard abutment
- Definitive Prosthetic Abutment
 - Titanium base + Bourn out abutment
 - Cad-Cam Body Scanner
 - Titanium base for Zirconium Abutment
- Single crown

Titanium base for Zirconium Abutment

Cad-Cam Body Scanner

Titanium base + Bourn out abutment

Temporary Prosthetic Abutment

Anti rotational temporary standard abutment

Definitive Prosthetic Abutment

Implant replica

Implant pick up

Single crown
Operations sequence

Healing abutments on implant placed

Healing abutment removal by Hex driver handle

Open impression tray placement

Unscrewing of pick up retention screw by Hex driver handle

Implant

Removal of impression tray with pick up

Pick up insertion, screwed with a light force by Hex driver handle

Impression tray with pick up is sent to the laboratory for casting the model

Impression material appliance on the pick up

Insertion of implant replica screwed to the corresponding pick up
Pink Soft resin for gum replica

Plaster master cast mounting

Master cast with pick up

Master cast with pick up removal

Master cast with implant replica after pick up removal

Crown wax on implant replica

Silicon impression of Crown wax

Screwing of Titanium base

Bourn out abutment placement

Bourn out abutment on titanium base
Analysis of bourn out abutment reduction by Silicon impression of Crown wax

Bourn out abutment reduced

Evaluation of abutments dimension and direction

Wax crown placement on the reduced abutment

The wax crown on the reduced bourn out abutment

Evaluation of the dimension of the wax framework of the ceramic crown

Displacement of the wax framework and bourn out abutment

Wax framework and bourn out abutment ready for the merger

Wax framework and bourn out abutment placement into the melting oven

Metal framework
Metal framework test on the Titanium base

Metal framework test on the master cast

Ceramic structure on the metal framework

Bonding of ceramic crown on Titanium base

Ceramic crown bonded to the Titanium base

Unscrewing of ceramic crown and Titanium base

Red laboratory screw removal

Ceramic crown removal

Ceramic crown positioning on the master cast

Ceramic crown positioned on the master cast
Ceramic crown positioning in the patient mouth

Ceramic crown positioned in the patient mouth

Ceramic crown retention screw screwed by Hex driver handle

Ceramic crown retention screw screwed by ratchet wrench at 25 N

Unscrewing of ceramic crown

Ceramic crown after access holes closure
Connector screwed prosthesis

- Connetor standard 40°
- Pick up St-Con
- Replica St-Con
- Temporary Abutment St Con

Definitive Prosthetic Abutment

- Bourn Out Abutment St Con
- Titanium Base + Bourn Out Abutment St Con
- Titanium base for Zirconium Abutment

Partial Bridge
Full arch bridge
Toronto
Operations sequence

Healing abutments on implants placed

Healing abutments removal by Hex driver handle

Implants

Insertion of suitable connector abutments by Hex driver handle. The height of the selected connector is based on the perimplant mucosa dimension

Connector abutments screwed to the implant morse taper connection

Connector abutments pick up screwed by Hex driver handle with a light force

Impression material appliance on the connector pick up

Open impression tray placement

Unscrewing of connector pick up retention screws

Removal of impression tray with connector pick up
impression tray with pick up is sent to the laboratory for casting the model

Insertion of implant replica screwed to the corresponding connector pick up

Pink Soft resin for gum replica

Plaster master cast mounting

Master cast with connector pick up

Master cast with connector replica after connector pick up removal

Crowns bridge wax on connector replica

Silicon impression of Crowns bridge wax

Titanium base+ bourn out abutments placement

Screwing of laboratory red retention screws
Analysis of connector abutments reduction

Trimming of bourn out abutments based on crowns bridge dimension

Evaluation of connector abutments dimension and direction

Wax bridge framework placement on the reduced prosthesis abutments

Evaluation of the dimension of the wax framework

Displacement of the wax framework with the bourn out abutment

Wax framework of the ceramic bridge and bourn out abutment ready for the merger

Wax framework and bourn out abutment placement into the melting oven

Metal framework

Metal framework test on the Titanium base
Metal framework test on the master cast

Ceramic structure on the metal framework

Titanium base

Bonding agent on the Titanium base

Bonding of ceramic bridge on Titanium base

Bonding agent to be removed

ceramic bridge bonded to the Titanium base

Unscrewing of ceramic bridge and Titanium base

Red laboratory screws removal

ceramic bridge with the access holes
Ceramic bridge retention screws screwed by Hex driver handle

Final Ceramic bridge retention screws screwed by ratchet wrench at 15-20 N

Ceramic bridge retention screws screwed by ratchet wrench at 15-20 N

Ceramic bridge after access holes closure
Placement of implants for a Sfero block retained overdenture should be planned based on an existing good denture or on a complete wax up for a new denture.
Operations sequence

In the lower jaw, a minimum of 2 implants can be sufficient.

But for a best retention and stability, four implants should be placed.

In the upper jaw, instead, a minimum of 4 implants are requested.

Following a complete healing period, an assessment of the distance between the top of the implant and the highest level of peri-implant mucosa must be calculated.

Depending on that distance, the suitable sfero-block abutment is chosen. Sfero Block abutment should never be positioned under the mucosal tissue.

Use a sfero block driver to install each abutment. Using a clockwise movement, engage the abutment within the internal cone morse portion of the implant and use a torque wrench of 20N to secure the seating.

Place a plastic disc over the active segment of the attachment.

Connect the Sfero Inox Ball Housing to the Sfero Plastic Insert.

Connect the Sfero Inox Ball Housing and the Sfero Plastic Insert to the Sfero Block attachment.

Place a plastic disc over the active segment of the attachment.
Create a cavity within the denture base above the implant sites, leaving a space of 2 mm around the attachment housing.

Try –in the denture, asking the patient to bite down, to ensure it seats without any distortion.

Mix a self curing acrylic resin. Cover housing and fill prepared cavities within the denture base.

Fit the denture and ask the patient to bite down all the way. Wait until resin is completely cured.

Inspect for voids and if needed, add small amounts of pink acrylic resin to ensure that housing are completely embedded in resin and always placed denture in the mouth, completely seated under occlusal pressure. Adjust and remove excess resin if present around the housing.

Caps will require periodic replacement, typically once very year. Replacement times are depending on multiple factors including: number of implants/attachments, relative inclination of implants, hygiene habits of patients etc…
Bar retained overdenture

Implant Bar Overdentures offer a removable implant solution for edentulous patients desiring a stable and esthetic prosthesis that improves retention, function and speech.

Before moving forward with the Implant Bar Overdenture option, consider anterior-posterior spread and keep in mind that 12 mm or more of vertical clearance is required. Although a closed-tray impression technique is described here, open-tray impressions are acceptable.
Operations sequence

Remove the healing abutments from the implants.

Insert the connector of the suitable height and tighten the screw.

Seat the coping pick up and tighten the screws.

Take a connector-level impression of the edentulous arch.

Allow the material to completely set before loosening the screws and removing the impression tray.

Master cast with connector replicas.

Titanium base+ bourn out abutment placement.

Screwing of red laboratory retention screws. Titanium base + bourn out abutments.
Final titanium bar.

The bar contoured to connect implant together, runs parallel residual ridge.

Titanium bar and retention clips.

Wax framework to be seated in the prosthesis overlying the bar.

Final metal framework seated in the prosthesis showing retention clips and their relative places in the metal framework seated in the final prosthesis.

Titanium bar seated on oral implant connectors in the patient mouth.

Closure of titanium bar holes.

The final prosthesis with retention clips is seated on the titanium bar.

Wax bar on connectors.

Final metal framework to be seated in the prosthesis overlying the bar.
Sterilization

1 Decontamination.

Decontamination is the methodology that precedes the operations of cleaning and washing. After the use, aids that can be reused must be soaked in a cleansing and disinfectant solution to remove residual tissue and bone scraps. During the automatic decontamination the trays with the instruments that needs treating must be placed inside the washing instrument device and start the disinfection program following the producer instructions.

2.1 Manual washing.

The result of a good cleansing action leads to a reduced quality/quantity of the microbial load (bio-burden) that is the key to a successful sterilization. The proceedings of the manual cleaning contemplate that the material is soaked in a cleansing liquid solution that can be: surfactant, enzymatic, pluri-enzymatic. The producer instructions regarding the concentration, temperature and length of action must be rigidly respected. The material must be placed on a grid, which must be suspended in the solution in order to prevent possible accident while collecting the instruments lying on the bottom of the basin. The material must be put disassembled into the solution so that the liquid detergent comes into contact with all parts. It is important that the solution is replaced frequently and/or each time that it clearly looks dirty. After the immersion phase, instruments must be brushed by using proper brushes to eliminate organic residues that haven’t been removed by the detergent liquid action. This treatment is imperative for instruments with hollows, joints and knurling.

2.2 Ultrasound washing.

A good result is reached with the rigid respect of the following indications: the correct concentration of the solution prescribed by the producer; water temperature (around 40° C. and however based on the solution used); the ultrasound frequency must be around 35KHz; time of contact (minimum 5 minutes). Instruments must be completely soaked in the solution, opened and disassembled, placed so that they don’t overlap. The cleansing solution must be replaced with regular intervals depending on frequency, condition of the liquid and however daily.

2.3 Automatic washing.

Modern technology offers systems that provide automatic cleansing of the medical instruments. Automatic cleaning can be performed by the use of instrument washers, thermal disinfection washing machines or ultrasound machines. The cleaning method of the instrument washing machines ensures a homogeneous dirt removal, thanks to the use of a constant concentration of cleansing liquid provided that the instruments don’t overlap. A process of thermal disinfection is also associated to the mechanic cleansing method (for example 90° C for 10 minutes).
3 Rinse.

After the ultrasound procedure and the manual cleansing it is necessary to perform a rinsing, possibly with demineralized water that doesn’t leave stains.

4 Drying.

After the rinse, instruments must be accurately dried in order to avoid corrosion risk, possibly with medical compressed air. Alternatively, drying can be performed with clean disposable wipes that mustn’t leave fibers.

5 Packaging.

The packaging of the instruments to be submitted to sterilization must allow the penetration and the consequent contact with the sterilizing agent with the treated material.

6 Steam sterilization.

The machines that allow putting steam under pressure are named autoclaves, or more properly steam sterilizers. They have a sealed chamber, which resists to high pressures. The relation between the three physical parameters (time, temperature and pressure) are dictated by Farmacopea and by the European laws concerning steam sterilization (EN 285, EN 554).

7 Package.

All dental implants Series CLC CONIC are supplied in a sterile sealed double packaging that protects them from external agents and ensures sterility during storage or use, until the date of expiration.

8 Conservation.

Product must be conserved inside their package at room temperature (18 – 25 °C). Use the sterilized components within the period indicated by the producer of the sterile pouches.